L., 1874, Atlantic Monthly 33:92-111; Danilevskiy, N.Ya., 1885/1889, In: Darvinizm, St. Petersburg, M.Ye. Komarov's Publisher, Vol.1, Part I:XII + 519, Part II:XVI + 530 + 148, Vol.2:2000 (in Russian).

Kim, W., J.M. Kim, and D.J. Shin. Department of Biology, Dankook University, Cheonan-Si, Choong-Nam 330-714, Korea. Molecular analysis for specific hobo deletion derivatives in the Korean population of Drosophila melanogaster.

On the basis of our results of *in situ* and Southern blot hybridization using *XhoI* restriction enzyme (Kim and Kim, 1996), the Korean population of *D. melanogaster* appeared to have a low copy number of 3.0 kb putative full-size *hobo* elements and a high copy number of internally deleted *hobo* elements. This result is somehow comparable with the earlier reports

detected from American and Eurasian populations of *D. melanogaster* (Periquet et al., 1989a, b; Pascual and Periquet, 1991; Boussy and Daniels, 1991). Periquet et al. (1989a, 1990) reported the presence of two major classes of hobo

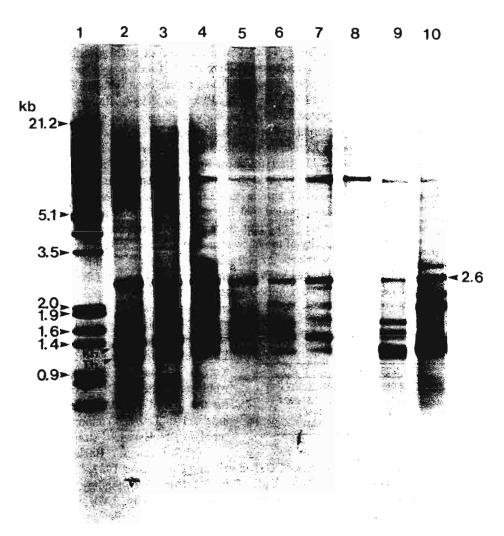


Figure 1. Southern blot analysis for the structure of *hobo* elements from Korean lines of *D. melanogaster*. Genomic DNAs were digested with *Xho*I, and hybridized with the 2.6 kb *Xho*I restriction fragment of the pH108 plasmid as a probe. Lanes are as follows: (1) Dig-labelled DNA marker III, (2) Cheonan 96-33 (H⁺), (3) Cheju 96-29 (H⁺), (4) Cheonan 96-15 (H⁰), (5) Cheju 96-12 (H⁰), (6) Cheonan 96-6 (H⁻), (7) Cheju 96-9 (H⁻), (8) Basc (E), (9) Harwich (E), (10) 23.5*/Cy (H). H⁺, H⁰, and H⁻ strains were classified by reference tests of Pascual and Periquet (1991).

elements, a 3.0 kb element class and one particular deletion derivative class of elements called the element. which have accumulated in all naturallyoccurring strains throughout the Eurasian continent. They suggested that the presence of Th element might be interpreted potential as regulatory elements of the hobo-induced hybrid dysgenesis.

Based on the result of Southern blot hybridization, a specific 1.7 kb hobo deletion derivative (1.3 kb XhoI restriction fragment in Figure 1) is the most preserved in all of the Korean lines tested and is termed Kh element. The 1.5 kb *Th* element, giving a 1.1 kb fragment and 3.0 kb full-size hobo element (2.6)fragment) are also observed in these lines (Figure 1). The entire 1.7 kb sequence of four Kh elements derived from Korean lines have been obtained by polymerase chain reaction (PCR) and DNA sequencing. **PCR** amplification of Kh element sequence was performed on the genomic DNA using the following two primer sequences in pH108 (Streck et al., 1986): #1, 5'-CAGAGAACTGCAAGGGT GGC-3' (1-21), and #2947,

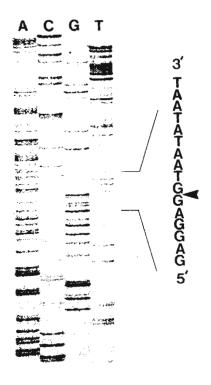


Figure 2. Sequencing gel autoradiograph of a segment of the 1.7 kb *Kh* element from a Korean line. The arrow shown is that of the breakpoint (938/2192) of the *Kh* element from an autonomous 2959 bp HFL1 *hobo* element.

Table 1. Comparison of sequence differences between deletion derivative *Kh* and *Th* element derived from Korean lines of *D. melanogaster*.

	HFL1 (2959 bp)		
	Kh element (bp)	Th (1) element (bp)	Th (2) element (bp)
Internal deletion site Deletion size Size in genome	939-2191 1253 1706	940-2381 1442 1517	923-2377 1455 1504

5'-GCCCGCCACTCGCACTCTAC-3' (2947-2928) by the method of Kim and Kidwell (1994). The 1.7 kb fragments of individual Kh elements were cloned into pCRTMII vector plasmids, and subsequently sequenced by the dideoxy-chain-termination method (Sanger *et al.*, 1977) using the Sequenase kit (U.S. Biochemical, Cleveland) according to the supplier's protocol. We also determined the sequences of Th1 and Th2 elements isolated from these lines, to compare the breakpoint to Kh element.

The sequence of all *Kh* elements tested in these populations suggested that they might have been derived from the autonomous *hobo* element HFL1 (Calvi *et al.*, 1991) by a 1253 bp internal deletion between positions 939 and 2191 (Figure 2). The sequences of *Th*1 and *Th*2 elements appeared to be identical to that of the HLF1 with the exception of internal deletions of 1442 bp and 1455 bp removing nucleotides 940-2381 and 923-2377, respectively (Table 1). Therefore, all of these *hobo* deletion derivatives seem to be derived from the HLF1 *hobo* element, not from pH108.

The massive presence and the spread of such specific deletion derivatives might be due to a selective favor of individuals carrying high copy numbers of these deleted elements, as has been reported for the KP element in the P-M hybrid system (Black et al., 1987; Rasmusson et al., 1993). It is suggested that the high copy numbers of Kh and Th elements provides an explanation for the suppression of hobo-mediated hybrid dysgenesis in the Korean population of D. melanogaster. However, the presence of a 2.6 kb Xhol fragment by itself in this study cannot be a sufficient prediction of hybrid dysgenesis or autonomous because of the sequence heterogeneity among the 3.0 kb hobo element. Bazin and Higuet (1996) also reported that the structure of the S region where an amino acid sequence (TPE) presents a repetition polymorphism could be specific to the activity of the hobo element. Further work will be required to identify the sequence of 3.0 kb hobo elements in this population whether an autonomous hobo element is present or not. A DNA sequence analysis of the 3.0 kb hobo element in the Korean population of D.

melanogaster is in progress.

Acknowledgments: This work was funded by a Genetic Engineering Research Project from the Korean Ministry of Education. We would like to thank Dr. M.G. Kidwell for the gift of pH108. We are also indebted to Dr. G. Yannopoulos for supplying the Harwich strain.

References: Bazin, C., and

D. Higuet 1996, Genet. Res. 67: 219-226; Black, D.M., M.S. Jackson, M.G. Kidwell, and G.A. Dover 1987, EMBO J. 6: 4125-4135; Boussy, I.A., and S.B. Daniels 1991, Genet. Res. 58: 27-34; Calvi, B.R., T.J. Hong, S.D. Findley, and W.M. Gelbart 1991, Cell 66: 465-471; Kim, W., and M.G. Kidwell 1994, Dros. Inf. Serv. 75: 44-47; Kim, J.M., and W. Kim 1996, Korean J. Genetics 18: 83-92; Pascual, L., and G. Periquet 1991, Mol. Biol. Evol. 8: 282-296; Periquet, G., M.H. Hamelin, Y. Bigot, and K. Hu 1989a, Genet. Sel. Evol. 21: 107-111; Periquet, G., M.H. Hamelin, Y. Bigot, and A. Lepissier 1989b, J. Evol. Biol. 2: 223-229; Periquet, G., M.H. Hamelin, R. Kalmes, and J. Eeken 1990, Genet. Sel. Evol. 22: 393-402; Rasmusson, K.E., J.D. Raymond, and M.J. Simmons 1993, Genetics 133: 605-622; Sanger, F., S. Nicklen, and A.R. Coulson 1977, Proc. Natl. Acad. Sci. USA 74: 5463-5467; Streck, R.D., J.E. MacGaffey, and S.K. Beckendorf 1986, EMBO J. 5: 3615-3623.